Determination of Mechanical and Surface Properties of Semicrystalline Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites

Laura E. Moody¹, Darrell Marchant¹, Wade W. Grabow¹ Andre Y. Lee² and Joseph M. Mabry¹

¹Air Force Research Laboratory, Edwards AFB, CA 93534 ²Michigan State University, East Lansing MI 48824

maintaining the data needed, as including suggestions for reduce	nd completing and reviewing the ring this burden, to Washington should be aware that notwithsta	collection of information. Send Headquarters Services, Directors	comments regarding this bu ate for Information Operation	rden estimate or any one and Reports, 1215	s, searching existing data sources, gathering and other aspect of this collection of information, Jefferson Davis Highway, Suite 1204, Arlington to comply with a collection of information if it	
1. REPORT DATE 11 OCT 2005				3. DATES COVERED 00-10-2005 to 00-10-2005		
4. TITLE AND SUBTITI			5a. CONTRACT NUMBER			
	Surface Propertie sites (PREPRINT		5b. GRANT NUMBER			
Semici ystanine i	sites (1 KEI KIIVI	<i>)</i> 	5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Laura Moody; Joseph Mabry; Wade Grabow; Darrell Marchant; Andre Lee				5d. PROJECT NUMBER 2303		
				5e. TASK NUMBER 0521		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC),AFRL/PRSM,9 Antares Road,Edwards AFB,CA,93524-7401				8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-PR-ED-VG-2005-364		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC), AFRL/PRS, 5 Pollux Drive, Edwards AFB, CA, 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S) XC		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-PR-ED-VG-2005-364		
	AILABILITY STATEMEN blic release; distr	NT ibution unlimited				
13. SUPPLEMENTARY Presented at the		l Technical Confe	rence, Seattle, V	WA, 30 Oct	- 3 Nov 2005.	
14. ABSTRACT N/A						
15. SUBJECT TERMS						
16. SECURITY CLASSII		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT	OF PAGES 24	PERSON	

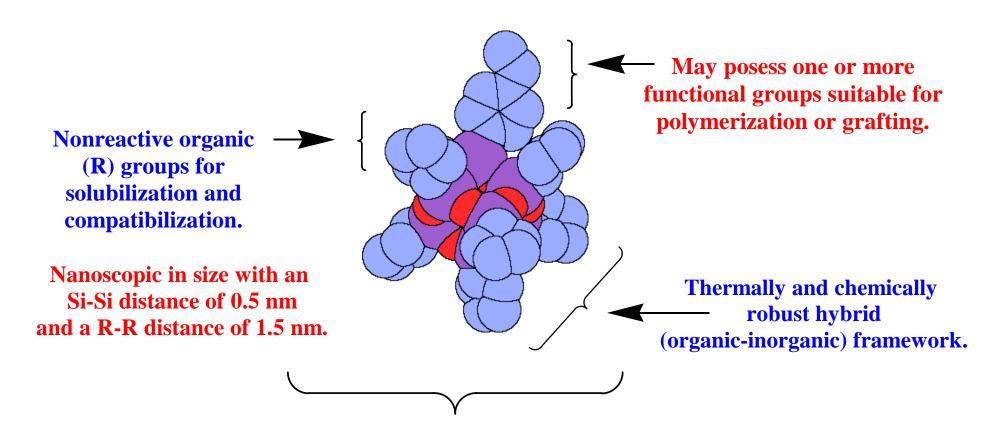
Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- Introduction
- Experimental
- Results and Discussion
- Conclusions
- Acknowledgements

Introduction



- Nanomodification of semicrystalline polymers
 - unequalled thermal, mechanical and surface properties at low volume fractions that cannot be obtained using conventional fillers
- Blending POSS molecules into polymers can increase the thermal and mechanical properties as well as the surface properties
- The objective of this study is to examine the effect of blending various POSS molecules into a variety of appropriate semicrystalline polymers.

Anatomy of a POSS Nanostructure

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

Background

- Bruce Fu and coworkers
 - Methyl₈T₈ into ethylene-propylene copolymers yielded 70% increase in the Young's Modulus.
 - POSS molecules crystallized and these nanocrystals formed weak bonds with the polymer chains.
- Unpublished results indicate that this reinforcement is not seen in polyethylene homopolymer blends.
 - Methyl pendant group on the polymer chain is influencing the reinforcing efficiency of the POSS molecules
- The primary reinforcing mechanism in the nanocomposites, POSS/POSS interactions, POSS/polymer interactions or a combination of the two, is a subject for future research.

Materials

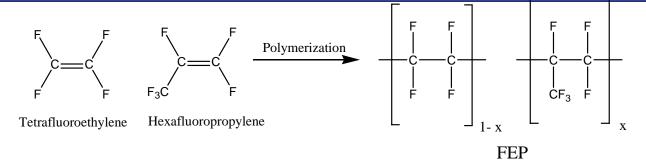
Fluorooctyl₈T₈

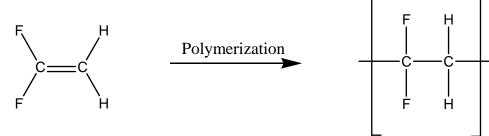
 $R = -CH_2CH_2(CF_2)_5CF_3$

Fluorodecyl₈T₈

 $R = -CH_2CH_2(CF_2)_7CF_3$

Methyl₈T₈

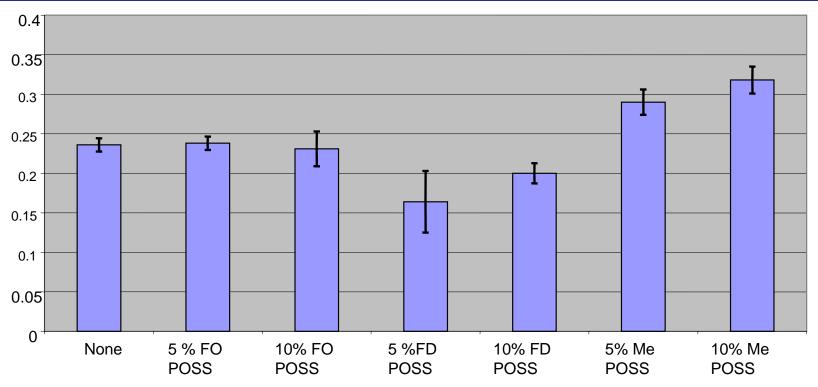

R = Methyl


POSS (polyhedral oligomeric silsesquioxane)

Blend Preparation

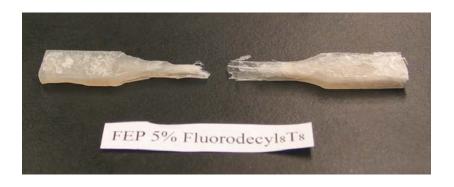
Vinylidene fluoride

PVdF


Blend Preparation

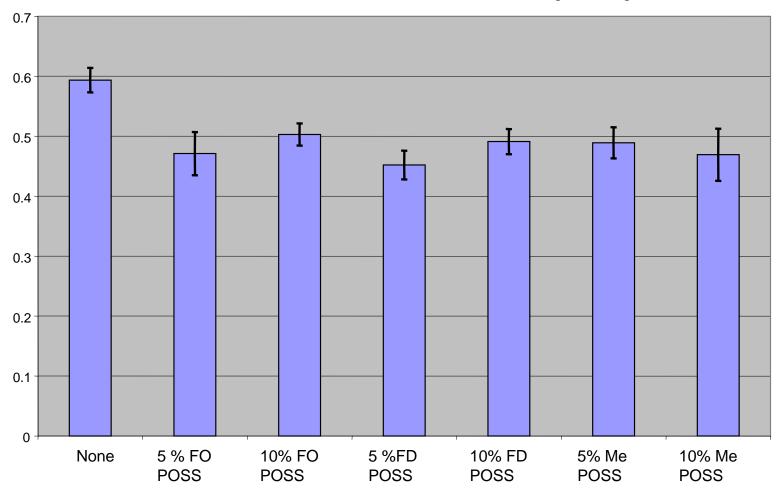
- Five and ten weight percent of methyl₈T₈, Fluorooctyl₈T₈ and fluorodecyl₈T₈ melt blended into FEP and PVDF using a DSM Microcompounder
 - Mixed under nitrogen at screw speed of 100 RPM
 - FEP blends compounded at 280 °C for three minutes
 - PVDF blends mixed at 180°C for three minutes
 - Injection molded directly from microcompounder
- Five and ten weight percent methyl₈T₈ blended into PP using a DSM Minicompounder.
 - PP blends processed at 220 °C for ten minutes

- •Methyl₈T₈ blended into FEP
 - •25% increase in modulus
 - No difference between 5 and 10 wt% of filler
- •Fluorodecyl₈T₈ or fluorooctyl₈T₈
 - No difference in modulus from unfilled FEP
 - Inconsistent results

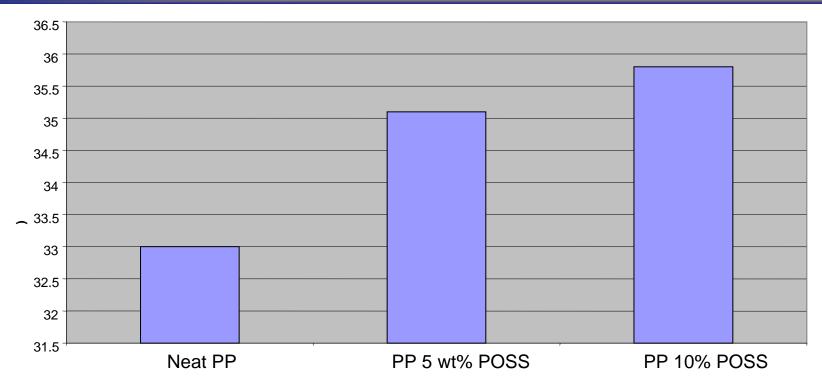


- Blends with FEP and either fluorodecyl₈T₈ or fluorooctyl₈T₈
 - Lower yield points, between 7-8 MPa, when compared to unfilled FEP, 10.5-12.5 MPa range.
- Blends with FEP and methyl₈T₈
 - No significant change in yield point compared to unfilled FEP

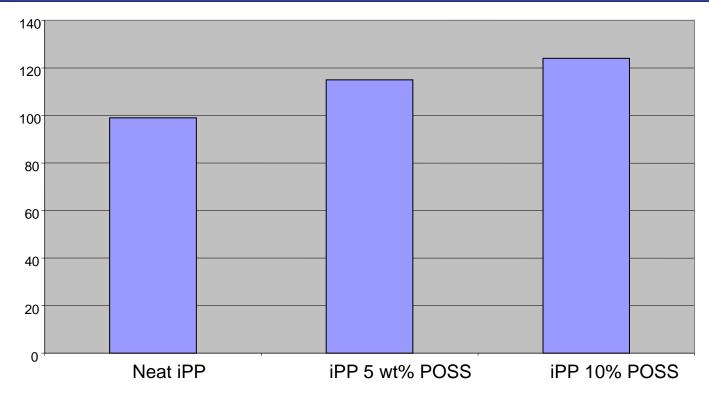
- Data gathered for FEP filled with fluorodecyl₈T₈ or fluorooctyl₈T₈ inconsistent
 - Outer layers of tensile bar flaked away as soon as tension was applied
 - Interior of the tensile bars frequently elongated to over 150% strain before breaking
 - Indirect evidence of surface migration of the nanoparticles with a core/shell morphology
 - Each region has different physical properties



- PVDF samples
 - Elongated until failure
 - 55% PVDF
 - Average of 80% nanofilled PVDF
 - All fillers lowered the modulus
 - On average 20% decrease
 - This may imply that there is a uniform concentration of the POSS throughout the sample
 - No significant difference was found among the various types of fillers or different loadings
- Unfilled PVDF samples had a slightly higher yield point (40.0 MPa) than did any of the POSS filled samples (36.0-37.5 MPa range)

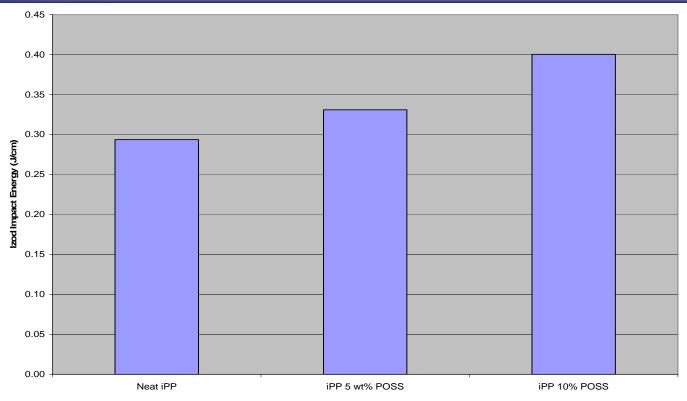


Modulus of PVDF Blends (GPa)



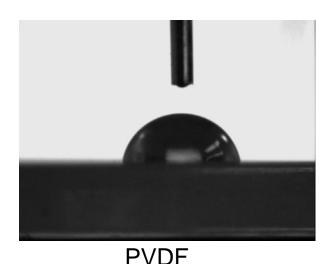
- Methyl₈T₈/PP blends showed a minor increase (5-10%) in tensile strength compared to neat blends
- Contrasting results due to the different compatibilities of the methyl₈T₈ with FEP and PP
- Methyl₈T₈ has a higher affinity for the PP and thus has a stronger reinforcing capability

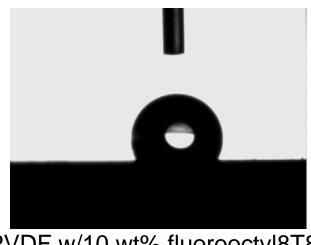
Heat Distortion Temperature (°C)



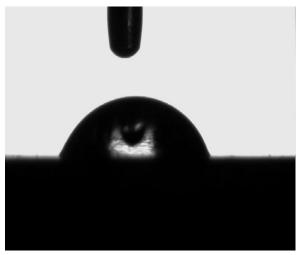
- Addition of POSS to PP yielded a substantial increase (15 – 25%) in heat distortion temperature
- Increase is due to interactions between the POSS crystallites and polymer crystallites

Impact Strength

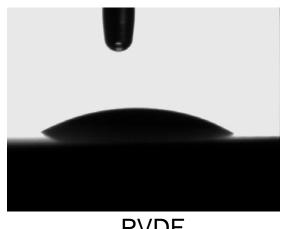



- The addition of modulus increasing nanoparticles actually increases the impact properties (15 – 40% increase)
- Increase may be derived from the nanodispersion of the POSS crystallites, which are not large enough to create stress concentrations, and the reinforcing ability of the POSS crystallites.

- Addition of fluorodecyl₈T₈ and fluorooctyl₈T₈ greatly increased the hydrophobicity of PVDF blends
 - 5 wt % of either material increased contact angle from ~70° for unfilled PVDF to between 105-110°
- Addition of 10 wt % of FluoroPOSS yielded angles as high as 116°
- Addition of methyl₈T₈ to PVDF showed a more modest increase in hydrophobicity, but still an improvement over the unfilled material



PVDF w/10 wt% fluorooctyl8T8



- Fluorodecyl₈T₈ and fluorooctyl₈T₈ increased the oleophobicity of **PVDF**
 - Unfilled PVDF samples yielded contact angles around 25°
 - Addition of fluorodecyl₈T₈ yielded contact angles greater than 70°
 - Addition of fluorooctyl₈T₈ yielded contact angles greater than 50°
- Addition of methyl₈T₈ decreased the oleophobicity of PVDF

PVDF 5wt% Fluorooctyl8T8

PVDF

 FEP filled with methyl₈T₈ yielded contact angles as high as 126°

FEP 10% methyl8T8

- Surface of injection molded FEP samples was uneven
 - —Contact angle measurements were inconsistent
 - -Top layer polished off with very fine sandpaper
 - After polishing, contact angles were in the same range as those found for unfilled FEP samples
 - —Either flow patterns during injection molding or surface migration may be pushing the fillers toward the surface

Conclusions

- FluoroPOSS blended into PVDF lowered the modulus
 - No significant difference was observed among different fillers
 - Slightly lower yield points were observed for the filled versus unfilled PVDF blends
- FEP blends showed indirect evidence of surface migration, as evident in core/shell morphology of injection molded tensile bars
 - Nanoparticles may not be evenly distributed
 - Methyl₈T₈ significantly increased the modulus of FEP blends

Conclusions

- POSS added to polypropylene/methyl₈T₈
 - Increased heat distortion temperature by about 25%
 - Increased impact energy by over 35%
 - Tensile strength increased with the addition of POSS
- Water and organic contact angles
 - FluoroPOSS blended into fluoropolymers increased the water and organic contact angles
 - Addition of methyl₈T₈ to PVDF decreased the oleophobicity, but increased the hydrophobicity

Summary and Conclusions

- FEP w/POSS
- Core/Shell Morphology
 - Surface Migration Functionally graded materials
 - Non-uniform dispersion Poor processing
- Mechanical Properties
 - FluoroPOSS no difference in modulus, lower yield stress
 - Methyl₈T₈ increase in modulus, neutral yield stresses
 - CH₃ group on methyl₈T₈ interacting with CF₃ group on FEP

Summary and Conclusions

- PVDF w/POSS
- Mechanical Properties
 - POSS decreased modulus
 - POSS decreased yield stress
 - No POSS/polymer chain interactions
- Contact angles
 - Water contact angles increased
 - Organic contact angles
 - Increased with incorporation of FluoroPOSS
 - Decreased with incorporation of methyl POSS

Summary and Conclusions

- PP w/POSS
- Mechanical Properties
 - POSS increased Heat Distortion Temperature
 - POSS increased tensile strength
 - POSS increased IZOD impact strength
- Possible POSS/Polymer chain interactions